尽管存在许多减少卷积神经网络(CNN)过度拟合的方法,但仍不清楚如何自信地衡量过度拟合的程度。但是,反映过度拟合水平的度量可能非常有用,可对不同体系结构的比较和评估各种技术来应对过度拟合。由于过度拟合的神经网络倾向于记住训练数据中的噪声而不是普遍看不见的数据,因此我们研究了训练精度在增加数据扰动的存在并研究与过度拟合的联系时如何变化。尽管以前的工作仅针对标签噪声,但我们还是研究了一系列技术,以将噪声注入训练数据,包括对抗性扰动和输入损坏。基于此,我们定义了两个新的指标,可以自信地区分正确的模型和过度拟合模型。为了进行评估,我们得出了事先已知过度拟合行为的模型池。为了测试各种因素的效果,我们基于VGG和Resnet引入了架构中的几种反拟合措施,并研究其影响,包括正则化技术,训练集大小和参数数量。最后,我们通过测量模型池外几个CNN体系结构的过度拟合度来评估所提出的指标的适用性。
translated by 谷歌翻译
基于对抗斑块的攻击旨在欺骗一个有意产生的噪声的神经网络,该网络集中在输入图像的特定区域中。在这项工作中,我们对不同的贴片生成参数进行了深入的分析,包括初始化,贴剂大小,尤其是在训练过程中将贴剂放置在图像中。我们专注于对象消失的攻击,并以Yolov3作为白色盒子设置中的攻击的模型运行实验,并使用COCO数据集中的图像。我们的实验表明,在训练期间,将斑块插入大小增加的窗口内,与固定位置相比,攻击强度显着提高。当斑块在训练过程中随机定位时,获得了最佳结果,而贴片位置则在批处理中也有所不同。
translated by 谷歌翻译
目前,大规模部署自动驾驶汽车的核心障碍在于罕见事件的长尾。这些非常具有挑战性,因为它们不经常发生在深度神经网络的培训数据中。为了解决这个问题,我们建议生成其他合成训练数据,涵盖各种各样的角色情况。由于本体可以在启用计算处理的同时代表人类的专家知识,因此我们使用它们来描述场景。我们提出的主体本体论能够模拟文献中所有常见的角案例类别的场景。从这个主体的本体论中,可以得出任意的场景描述本体论。以自动化的方式,可以将它们转换为OpenScenario格式,然后在模拟中执行。这样,也可以生成具有挑战性的测试和评估方案。
translated by 谷歌翻译
大量的研究与逼真的传感器数据的产生有关。激光点云是由复杂的模拟或学习的生成模型生成的。通常利用生成的数据来启用或改善下游感知算法。这些程序来自两个主要问题:首先,如何评估生成数据的现实主义?其次,更现实的数据还会导致更好的感知表现吗?本文解决了问题,并提出了一个新颖的指标,以量化LiDar Point Cloud的现实主义。通过训练代理分类任务,可以从现实世界和合成点云中学到相关功能。在一系列实验中,我们证明了我们的指标的应用来确定生成的LiDAR数据的现实主义,并将我们的度量的现实主义估计与分割模型的性能进行比较。我们确认我们的指标为下游细分性能提供了指示。
translated by 谷歌翻译
考虑到整个时间领域的信息有助于改善自动驾驶中的环境感知。但是,到目前为止,尚未研究暂时融合的神经网络是否容易受到故意产生的扰动,即对抗性攻击,或者时间历史是否是对它们的固有防御。在这项工作中,我们研究了用于对象检测的时间特征网络是否容易受到通用对抗性攻击的影响。我们评估了两种类型的攻击:整个图像和本地界面贴片的不可察觉噪声。在这两种情况下,使用PGD以白盒方式生成扰动。我们的实验证实,即使攻击时间的一部分时间都足以欺骗网络。我们在视觉上评估生成的扰动,以了解攻击功能。为了增强鲁棒性,我们使用5-PGD应用对抗训练。我们在Kitti和Nuscenes数据集上进行的实验证明了通过K-PGD鲁棒化的模型能够承受研究的攻击,同时保持基于地图的性能与未破坏模型的攻击。
translated by 谷歌翻译
对抗斑块产生的标准方法导致嘈杂的显着模式,这些模式很容易被人类识别。最近的研究提出了几种使用生成对抗网络(GAN)生成自然斑块的方法,但在对象检测用例中只评估了其中的一些方法。此外,技术的状态主要集中于通过直接与补丁重叠的输入中抑制一个大边界框。补丁附近的抑制对象是一项不同的,更复杂的任务。在这项工作中,我们评估了现有的方法,以生成不起眼的补丁。我们已经针对不同的计算机视觉任务而开发的适应方法,用于Yolov3和CoCo数据集的对象检测用例。我们已经评估了两种生成自然主义斑块的方法:通过将斑块的产生纳入GAN训练过程和使用预审计的GAN。在这两种情况下,我们都评估了性能和自然主义斑块外观之间的权衡。我们的实验表明,使用预先训练的GAN有助于获得逼真的斑块,同时保留类似于常规的对抗斑块的性能。
translated by 谷歌翻译
自动驾驶是朝着更光明,更可持续的未来的关键技术。为了实现这种未来,有必要在共享的移动性模型中利用自动驾驶汽车。但是,要评估两个或更多的路线请求是否有可能进行共享乘车,这是一项计算密集的任务,如果通过重新处理完成。在这项工作中,我们提出了动态最长的常见子序列算法,以便对两种途径进行快速和成本效益的兼容性比较,并动态地合并了适合共享跳闸的路线的一部分。基于此,还可以估计,满足当地出行需求可能需要多少个自动驾驶汽车。这可以帮助提供者估算必要的车队规模,决策者更好地了解出行模式和城市以扩展必要的基础设施。
translated by 谷歌翻译
在过去的几年中,自主驾驶社区取得了巨大进展。然而,作为一个关键问题的问题,异常检测是朝着现实世界中大规模部署自动驾驶汽车的巨大障碍。尽管许多方法,例如不确定性估计或基于分割的图像重新合成,这是非常有希望的,但还有更多的探索。特别受到基于图像重新合成的异常检测作品的启发,我们提出了一种通过样式转移进行异常检测的新方法。我们利用生成模型将图像从其原始风格的道路交通域映射到任意型号,然后返回以生成Pixelwise Anomaly分数。但是,我们的实验证明了我们的假设错误,我们无法产生重大结果。但是,我们想分享我们的发现,以便其他人可以从我们的实验中学习。
translated by 谷歌翻译
在过去几年中,深度学习的巨大进展已导致了我们道路上有自动驾驶汽车的未来。然而,他们的感知系统的性能在很大程度上取决于使用的培训数据的质量。由于这些系统通常仅覆盖所有对象类别的一部分,因此自主驾驶系统将面临,因此这种系统在处理意外事件方面努力。为了安全地在公共道路上运行,对未知类别的对象的识别仍然是一项至关重要的任务。在本文中,我们提出了一条新的管道来检测未知物体。我们没有专注于单个传感器模式,而是通过以顺序结合最先进的检测模型来利用LiDAR和相机数据。我们在Waymo开放感知数据集上评估我们的方法,并指出当前的异常检测研究差距。
translated by 谷歌翻译
Sparsely-gated Mixture of Expert (MoE) layers have been recently successfully applied for scaling large transformers, especially for language modeling tasks. An intriguing side effect of sparse MoE layers is that they convey inherent interpretability to a model via natural expert specialization. In this work, we apply sparse MoE layers to CNNs for computer vision tasks and analyze the resulting effect on model interpretability. To stabilize MoE training, we present both soft and hard constraint-based approaches. With hard constraints, the weights of certain experts are allowed to become zero, while soft constraints balance the contribution of experts with an additional auxiliary loss. As a result, soft constraints handle expert utilization better and support the expert specialization process, while hard constraints maintain more generalized experts and increase overall model performance. Our findings demonstrate that experts can implicitly focus on individual sub-domains of the input space. For example, experts trained for CIFAR-100 image classification specialize in recognizing different domains such as flowers or animals without previous data clustering. Experiments with RetinaNet and the COCO dataset further indicate that object detection experts can also specialize in detecting objects of distinct sizes.
translated by 谷歌翻译